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1 Project Summary

The objective of the DSW project is to investigate the concept of a collaborative workspace. This
workspace should allow large communities of users, working at long distances, to collaborate as
effectively as if they are in a single room talking face to face and have access to information regardless
of its native location around the world.

The objective of DSW is closely related to the field of computer-supported cooperative work.”While
most efforts in that field have concentrated on user interfaces and data structures, relatively little
attention has been paid to whether systems incorporating the new features scale well as parts of the
system are distributed over various distances, including local-area networks (LANSs) and wide-area
networks (WANs). DSW addresses this concern.

The results of this project include the following:

1. We identified special issues in the design and usage of distributed collaborative applications,
including the problems of consistency of and confidence in the data and decisions managed by
such applications, as well as the need to adapt to the varying performance capabilities of the
underlying computing resources.

2. We identified a spectrum of notions of distributed consistency that are applicable to distributed
collaborative applications.

3. We compiled a set of applicable metrics to describe quality of service in distributed
collaborative applications.

4. We developed a hypothetical collaborative application for the purpose of illustrating the
principles of DSW. (In addition, an actual demonstration application is being presented as a
separate deliverable.)

5. We applied the principles of DSW to a discussion of a distributed collaborative application
(the OpenMap project) that is being developed in another project at BBN Technologies. This
discussion includes detailed alternative algorithms for adaptation.

6. We collected experimental statistics on an adaptive CORBA application, showing how
adaptation is affected by system performance characteristics, in this case the characteristics of
the underlying network.

7. We submitted the results and lessons leamed to the 19" International Conference on
Distributed Computing Systems (ICDCS’99); see [REF-06].

A list of references used in this work appears in an appendix.




CORBA Common Object Request Broker Architecture. The OMG’s distributed object standard; see
OMG below.

DSW Distributed Shared Workspace. This project.

LAN Local-Area Network.

OMG Object Management Group. The largest consortium in the world, with over 500 software and
hardware vendors, end users, and government agencies. The OMG is developing the CORBA

standard. See URL http://www.omg.org.
QoS Quality of Service.
QuO Quality Objects, a quality of service framework for CORBA Objects.

WAN Wide-Area Network.




3 Technical Overview

In order to understand the concept of a collaboration workspace, in this section we explain the
background of working collaboratively, and the particular area of collaboration that DSW addresses.
Section 3.1 defines the broad area of worldwide information systems and how it ties to a distributed
shared workspace vision, and explains how simultaneous collaboration is required to satisfy the
performance requirements for collaboration in heterogeneous environments. Section 3.2 summarizes
the essential collaboration problem that is of interest here. Section 3.3 presents a detailed analysis of a
hypothetical crisis management application to illustrate the objectives that guided the DSW project,
including the demonstration to be delivered separately from this report. Finally, section 3.4 defines a
spectrum of consistency criteria that we found to apply to this area of research.

3.1 Introduction

3.1.1 Worldwide Information Systems and DSW Collaboration Vision

Wide-area, interoperable access to information, services and more complex facilities is becoming
available through a variety of technologies. Support to coordinate the activities of widely distributed
users is being supported through workflow management and similar approaches. And attempts to
support collaboration among simultaneous users is illustrated by game software and by efforts to
juxtapose virtual environments with video-conferencing along with planning tools and shared
information spaces.

These approaches serve when network delays are modest, availability is high and workspace
semantics are simple and supported by a few vendor applications. Scalability to large groups of users
is not well supported except perhaps for the use of internet multicast support for audio and video
streams; these techniques do not translate well to the actual data elements that occupy a shared internet
workspace. The existing architectures do not provide abstractions that work well to hide choices of
underlying prototype types such as point-to-point versus multicast, nor deal with the adaptations that
might help an end-user or agent negotiate how available communication should be applied to complex
data transfers to meet specific requirements. Examples might include reducing video quality to allow
more rapid data transfer, or reducing the level of detail or the amount of backup material that should
be pre-fetched to allow for more timely delivery of complete overview material.

Through our initial effort in this area, we are interested in pursuing models that are appropriate for
simultaneous human-human and human-agent collaboration, where data consistency can be relaxed to
adapt to varying availability so long as the people and agents using the system can still make
confident, correct decisions based on the data presented to them. Our focus is on creating a shared
object environment that can capture the essential “transaction” requirements of an application, and
validating this approach through use in building applications. This architecture can, over time, allow
choices of which objects and data elements are transferred and when those updates occur to be
handled by policy algorithms that can be written relatively independently of the applications. It will
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also allow choices of underlying transport type to be encapsulated, with the reliability strategy chosen
to match the transport type and data quality requirements of particular users. We are, for the moment,
focused on implementing these mechanisms in the visual and event space of human users; however,
the algorithms and techniques we develop are likely to be suitable for replicating persistent storage in
object databases, in CORBA services and in Java, and other means used to deliver distributed
information services.

3.1.2 Simultaneous Collaboration: Consistency, Confidence, Adaptation

The growth of web based information systems and the growing use of distributed object systems such
as CORBA are creating a foundation for a common information workspace that can be used for
collaboration. The technical infrastructure—web servers, object request brokers, the Java language
and environment, and so forth—create a distributed computing context that facilitates access to remote
information systems and services. It also facilitates integration efforts through user interfaces,
mediators, and agents that combine data from different sources. Advanced development efforts, such
as the DARPA ISO funded Joint Task Force Advanced Technology Demonstration (JTF-ATD), are
specifically intended to exploit this potential through the integration of new and existing information
accessed through servers and available for accelerated application development.

Our goal is to build one aspect of this infrastructure to the point of a true “Distributed Shared
Workspace (DSW),” that is scaleable to use by a large number of varying simultaneous users and can
be made to operate effectively in a wide area environment. Building such a workspace requires that
we address data consistency and event synchronization in ways to help users sustain a high level of
confidence in the collaborative decisions they make, while the system adapts to the varying
communication efficiency of intemet protocols, congestion and availability. The system may also
need to make use of active resource management mechanisms to promote efficient progress of
important, competing activities that share the resources of the workspace.

We are also setting out to develop the shared object model as a foundation for granting greater
adaptivity to information management in distributed information systems. What we propose is not in
conflict with the distributed object client/server model, but rather creates a significantly stronger
model that will reduce the need for the developers to deal directly with complex mechanisms, such as
proxy objects, that current distributed object computing environments require for performance
management. Object sharing can allow the developer to focus initially on an object’s functional
implementation, defining its essential methods. Object sharing then allows additional code to be
added that captures policy algorithms. Although the functional code may need to be altered to more
carefully capture how changes must be clustered into transactions or other aggregate groupings, the
policy code controls how and when the exchange of these changes is scheduled, dynamically, as
communication availability changes. The schedule may also be based on a forecast of future
availability. Policy also includes the potential to vary the accuracy or level of detail of the object that
is transmitted. Finally, this framework allows for the potential that the policy algorithm may treat
members of a conference differently, perhaps reducing the accuracy or detail of information sent to
users on low-speed links to allow them to keep up with the pace of the conference, which allowing
them the opportunity to improve the accuracy or detail on demand when needed. These goals go
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beyond those of Java, which is an effective tool for hiding whether methods are implemented locally
or remotely; object sharing includes consideration of persistence and consistency as steps toward a
framework that allows the policy algorithms to be treated separately from functional code, which in
turn is a step toward greater adaptivity.

3.2 The Collaboration Problem

The strictest version of simultaneous collaboration would incur significant delays since each program
would move in lockstep, committing changes with all parties before moving to the next step. We are
looking for a weaker, more highly available form of consistency, where some effects may be delayed
to cope with network congestion, but still appear in a coherent form when the data are finally
available. We are also looking to build, in the longer term, a combination of middleware, high level
abstractions, along with design patterns and programming techniques that will simplify the task of
developing these applications.

3.3 Crisis Response as a Problem-Focusing Context

The scope of DSW includes the definition and development of a distributed collaborative planning
scenario. This section describes distributed collaborative planning for a crisis response, and the
properties of the networks during crisis response.

3.3.1 Crisis Response Definition

In a crisis, high-level commanders are assigned. These commanders choose subordinates from
various branches of the military based on selections available or mandated from their higher
commanders. The process iterates until it reaches fixed non-crisis command structures. At each level
the commander issues a high-level situation description and desired end-states and the subordinate
commander devises more specific plans to accomplish mission goals. The superior commander
selects from proffered altemnative plans, resolves resource allocation issues, and approves going
forward. The planning process is often iterative and generally undergoes revision all during its
execution.

In the initial plan development phases, and during subsequent re-planning, subordinate commanders
communicate with their superiors and their own subordinate commanders and other support
infrastructure providing information relevant to all command levels, such as meteorological and
logistical data.

In a crisis, timeliness is a critical aspect of planning. It is often unrealistic to gather together all the
parties who need to participate and impossible to maintain such physical collocation. The participants
need to collaborate from widely dispersed locations as needed. This is even more necessary in the
deployment and execution phases of an operation.



While, there are of course minor exceptions to this general framework, this descriptioh captures the
flavor of many military planning doctrines.- A main goal of the DSW project is to support providing
better computer-supported tools for enhancing the collaborative planning and re-planning process.

3.3.2 Properties of a Network in Crisis

Communications support and requirements vary widely for command structures in a military response
to a crisis. Commanders and all other soldiers are initially assigned to well-established military
infrastructures, typically full military bases of operations or other kinds of battle groups.

As execution of a plan unfolds, component forces rapidly deploy outside this established
infrastructure. For instance, a CJTF is often deployed in a matter of days. Planning, of necessity,
continues throughout deployment and execution, perhaps with poor or no communications with the
experts in garrison. Networks are built, configured, and re-configured. Yet commanders have critical
communications requirements for returning information about the unfolding situation and mission
status, for receiving up to date data from specialized sources, and for re-planning in conjunction with
superior and inferior commanders and the changing landscape of the problems being solved.

Particularly in a crisis, brand new military network infrastructures are often deployed with time of the
utmost essence. Besides time constraints, other constraints imposed by the particular crisis at hand
can make these networks far from optimal as a basis for collaborative planning.

3.3.2.1 Intermittent Connectivity

The dynamic nature and restructuring of the network often introduces intermittent connectivity.
Various competing demands on the network often saturate the available bandwidth making effective
latencies high due to packet congestion. Discovery of new routes when subsets of network nodes go
off-line due to power system reconfiguration or outages can also wreck havoc with connectivity.

3.3.2.2 High Latency

Even without such congestion, the widely dispersed nature of United States military operations, as
well as many commercial endeavors does not lend itself to dramatic revision. The sheer distance
scales involved and fundamental physical limitations have significant implications for cross-
continental communication round-trip latencies.

Current telecommunication infrastructure includes thousands of satellites in geosynchronous orbits
22,000 miles above the surface of the Earth (see Figure 1). The speed of light mandates 236
milliseconds one-way transit delay for a packet to travel from a ground-based relay to the satellite and
back. Round-trip delays are typically nearly 500 milliseconds. Global communications routes may
even require multiple ground-space hops.




These times rapidly add up to network latencies unacceptable for simultaneous collaboration with
traditional client/server methodologies. While installation efforts are underway for both land-based
fiber-optic lines and low-flying satellite arrays, the actually physical space traversed by the light is still
likely to be a significant multiple of the minimum physical distance. Additionally, the military
environments DSW aims to support require network connections between highly mobile units, both
on land and at sea. Such mobile units are likely to rely on satellite signal relay for the foreseeable
future.

Figure 1 illustrates some of the scales involved. The great circle distance in the diagram may be
somewhat misleading since the absolute minimum distance between Norfolk and Hawaii is 5,000
miles, but it is very unlikely that this trajectory will be realizable in practice. More tangential routes
on the order of twice the minimum distance (or more) are the likely outcome of low-flying satellite
arrays. These sorts of paths will yield round-trip times on the order of 100 ms. While a substantial
improvement over the present situation, this is still only marginally better than the 160 ms typical with
28.8 KBPS analog modems. Round-trip times of this order have been shown to make applications
designed for low latency, such as remote X Windows display protocols, intolerably sluggish.

3.32.3 Routing Problems and Partitioned Networks

In addition to bandwidth, latency, and intermittent connectivity, crisis networks are also characterized
by routing difficulties. A partitioned network is one where host A can exchange packets with host B,
and host B can exchange packets with host C, but, unfortunately, host A cannot exchange packets with

22,000 mi. comm satellites in

geosynchronous
orbit: 500ms

PACOM
22,000 mi.

comm satellites
in low orbit:
50-100ms

ot

« Figure 1: Global Area Latency: Current and Future




host C. Ordinarily dynamic routing algorithms are designed to prevent this situation. Rapid initial
configuration, frequent reconfiguration, and mobile units within crisis networks contribute to make
partitioned networks. Static routes as default policies in many parts of the non-crisis network, which
the crisis network relies on also contribute to partitioned networks. The default static route policies
are often based on issues involving administrative control over which packets are actually routed,
rather than technical difficulties. A consequence of this foiling of dynamic routing algorithms is that
network partitioning is commonplace.

The consequence for the end user of network partitioning depends greatly on the nature of the
application. Because this situation is assumed to either be handled by the routers or be insoluble,
almost no programs and protocols either detect or adapt to it. If the application is a simple text-
oriented program, the user might be able to adapt via successive logins. But if the application is a
collaborative application or a more complex network-oriented client-server application it is almost
certain that full A-B-C collaboration will be impossible. The reason will often be due to
administration difficulties and not to authorization issues. This problem, however, is solvable if the
distributed applications in question detect the situation and adopt message-forwarding policies in lieu
of the routers. Such behavior could be optional and security policies enforced either by disabling or
forcing users to be authorized before activation of the internal routing compensation.

3.3.24 Bandwidth Variance over Times and Hosts

Beyond the functioning of the network, crisis networks are also characterized by extreme variance of
the network performance in bandwidth, latency, and reliability. The variance is both across hosts in
the network and over the course of time. Clearly functioning in and adapting to such a dramatically
variable and fundamentally limited communications substrate is difficult. This is the primary
constraint the crisis context imposes upon the design and implementation of DSW. Additional
information from quality of service facilities can further improve the detection and response to highly
variable networks.

3.3.2.5 Open-Loop Competition for Resources

In addition to poor baseline network characteristics, communication resources are in high demand by
many parties for many reasons. In a crisis the demand is even greater. The result is that the limited
network resources available tend to become and remain stretched to the limits of their capacities. This
open-loop competition between users of the network typically occurs across a large set of network
protocols. Besides DSW protocols, this set may include large numbers of e-mail transfers, HTTP web
page transfers, file transfers, audio and video teleconferencing, heavyweight ORB protocols, data base
queries and other more specialized traffic. Any particular user or application may only be able to
utilize a small slice of network transmission capability. Finite memory buffers on either side of the
links may overflow causing many re-transmissions to occur. The re-transmissions increase the
effective traffic, compounding the problem. The end result is that networks under heavy loads suffer

from extremely degraded performance.




Land-sea communications links are a contemporary example of how degraded performance can
become in these circumstances. These links may realistically consist of a single 14.4 Kbps secure
STU III modem link shared between all applications and protocols on the entire vessel. Effective
round-trip latencies can soar to over 30 seconds and bandwidth can plummet to mere dozens of bytes
per second. The situation can be so poor that many protocols can simply mistake poor performance
for a disconnected line. Even typing in a dedicated terminal application can become intolerably slow.

The same factors which make for a poorly optimized communication infrastructure are often the very
same factors which make collaboration so critical.

Having examined the kinds of problems we need to solve and the environmental constraints in which
we desire to operate within, we now motivate a proposed system design from a bottom up analysis,
mentioning top-down constraints as relevant.

3.4 A Spectrum of Notions of Distribufed Consistency

Distributed consistency is a term meant to refer to how multiple parties might agree on the values of
some shared data. There are a number of different “agreement models” which we might target. Since
distributed consistency maintenance has such a central role to the implementation of the toolkit, it is
appropriate to discuss some of the options. The options group into two categories. The term access
will often be used to mean any access to shared data, either reading or writing. We shall describe
these two categories, give examples in table form, and then motivate the choice we have decided is
most appropriate for the simultaneous collaboration portion of a shared work environment.

Techniques of the first category, models with explicit synchronization, achieve consistency through by
explicit waiting. In this type of model, any process which needs to modify the distributed data needs
to acquire permission to do so from the group of processes. Once this permission is had, the update

o Table 1: Consistency Models with Explicit Synchronization

Consistency Description

Weak Accesses to locks are sequentially consistent. No access to a lock is
allowed until all previous writes have completed everywhere. No
access to objects is allowed until all pending lock accesses are
complete.

Release Before an access to an object is performed, all previous lock
acquisitions must have completed successfully. Before a lock is
released, all previous read and writes done by the process must have
completed propagating. Acquire and release accesses to locks must
be PRAM consistent (see Table 2).

( Lazy release Like release consistency, but sending all the update data is deferred
until some process acquires a lock.




» Table 2: Consistency Models without Explicit Synchronization

Consistency Description

Strict Any read of an object returns the value stored by the most
recent write operation to the object. This is the single-user
consistency model.

Sequential The result of any execution is the same as if the access of all
processors were executed in some sequential order, and the
accesses of each individual processor appear in this sequence in
the order specified by its program

Causal Accesses that are potentially causally related must be seen by all
processes in the same order. Concurrent writes may be seen ina
different order on different machines.

Pipelined RAM (PRAM) Writes done by a single process are received by all other
' processes in the order in which they were issued, but writes
from different processes may be seen in a different order by
different processes.

can be done and the permission released. Permission to modify data is often referred to as a “lock™.
Table 1 has a brief summary of some of the more commonly used forms of explicit synchronization
models. '

A general feature of all these models is that before any access to the shared data is done, the entire
group of participants has to grant access. Thisisa message-heavy exchange, which does not fare well
in a high latency environment or an environment where there are many participants over a WAN.

It is generally the case in distributed systems that more messaging is required to ensure stronger
guarantees. Each successive entry in Table 1 requires less messaging overhead, but gives fewer

guarantees.

Techniques of the second category, models without explicit synchronization, are given in Table 2.
These techniques achieve consistency by enforcing some order to the visibility of updates. In this type
of model, a process may need to wait for read or write access to data for some unspecified period of
time, but the read or write may be implicitly delayed. No explicit access token, like a lock, is required.

Agreement on the values of data is either a result of expensive group updates or a result of
“convergence” after some finite period of time. This latter process is of particular concern for DSW.
When the writing stops, the values of the various copies of the data will converge. In the PRAM
model with a timestamp protocol, when writes stop happening, the values will stabilize to the last
written value. All parties will agree upon this final ordering. The exact time it takes to reach this final
agreement will be a complex function of the number of communicating parties and communication
latency between each party.
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4 Collaborative Workspaces and Quality of Service

(QoS)

This section concretely relates quality of service to issues in distributed collaborative systems. In
Section 4.1 we describe experiences with distributed collaborative applications at BBN Technologies
that illustrate the need for adaptation and control over quality of service (QoS). In section 4.2 we
identify and address the particular requirements that arise from these experiences.

4.1 The Need for QoS in DSW: Experiences from MATT

BBN has been developing distributed middleware, and applications using it, for more than two
decades. In particular, we have been developing collaborative mapping software for the US
Department of Defense since 1987. The issues we address in this report, and our proposed approach
to addressing them, arise out of these experiences. A good example of the experiences developers
face due to the lack of QoS metrics and support is seen in the development of the Mapping Analysis
Tool for Transportation (MATT).

o Figure 2 : OpenMap™ Environment
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BBN completed development of MATT for USTRANSCOM in 1994 [REF-03]. MATT enables
transportation analysts to browse world maps and request geographically referenced information. The
MATT software forms the basis for BBN's current work on the JTF Map System, which provides
distributed collaborative plarming using the latest object-oriented programming concepts and three-
tiered client-server technology. This software provides mapping services for the JTF Planner,
Advanced Mobility Platform, Logistics Anchor Desk [REF-04], Voice-Activated Logistics Anchor
Desk [REF-05], METOC Anchor Desk [REF-01], and TRAC2ES. These systems have been fielded
in a wide variety of environments and locations, including Desert Storm and Bosnia.

MATT’s architecture supports the incorporation of many different kinds of geographic data, derived
from distributed data sources. Each data type is accessed by a CORBA data server called a specialist.
Specialists provide the translation from semanticaily rich geographic information sources to basic
geographically referenced objects to be rendered. A map viewer application presents the objects from
diverse data sources in multiple layers overlaid on a single display, which provides a shared map
workspace for collaboration. A user’s view may change due to changes in the data underlying the
layers — for example, an object’s status could change and the icon representing it must be similarly
changed — or due to interactive annotations by other users. Applications can incorporate the MATT
viewer capability into their particular GUI, while using specialists to add domain-specific
collaboration functionality. Example domains have included transportation and logistics planning.
OpenMap™ is a next-generation implementation of the MATT architecture, built in Java and based
on emerging open standards for geospatial information exchange [REF-02]. A representative example
of a MATT or OpenMap session is given in Figure 2.

4.1.1 The Choice-of-Implementations Dilemma

MATT allows a user to select a geographic region on a map in the workspace, and to request the
application to render all the applicable objects in that region. We now explain what steps were
involved in doing this, why some algorithms worked well in some conditions and poorly in others,
and how systemic limitations (in particular, the lack of QoS support) impeded an experienced
programmer from producing a generally acceptable implementation.
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render_region(geoLayer, region) {
obj ref list = geolayer.get objects(region);
foreach geoObject in obj_ref list

render geo_object (geoObject);
render geo_object (geoObject) {
latitude = geoObject.getLatitude();
longitude = geoObject.getLongitude();

glyph = geoObject.getGlyph();

render (latitude, longitude, glyph, ..);

« Figure 3 Pseudocode for Natural Object Access Implementation

4.1.1.1 Implementation 1: Natural Object Access

Initially, the programmer responsible for selection and rendering of a region implemented it in a
fashion represented by the pseudocode given in Figure 3.

Each layer of the map is displayed by making a call to render region (), which renders all
objects that fall within that region. The first step obtains a list of references to these objects, often
numbering in the thousands. The second step iterates over the list and renders each object
(represented by the variable geoObject). To render geoObject, several attributes of the object
are needed to determine the representation and location of the object. Each attribute is obtained by a
separate method call on geoObject.

This implementation accesses objects in the manner that the programmer considered most natural.
Since this code was developed initially to run on a single host, it did not interpose an ORB between
the client and the server objects. Under this set of circumstances, the implementation worked well.

In the distributed implementation of the map, however, the client and the servers for the

geoObjects ran on separate hosts, and the calls to geoObject became remote method
invocations using CORBA. The basic steps for a generic CORBA remote method invocation are as
follows:

13



1. Marshal the request message
2. Transmit the request message to the server host
3. Unmarshal the request message
4. Execute the server’s method
5. Marshal the reply message
6. Transmit the reply message to the client’s host
7. Unmarshal the reply message.
Figure 4 illustrates these steps and the physical resources they use.
CORBA
Interface
O,
{/
Client Host Network Server Host
Resources Resources | Resources
(CPU, memory) (CPU, Memory)
« Figure 4: Steps in a Generic CORBA Invocation

As discussed previously, this implementation performed poorly when an ORB was interposed
between the client and the server object. This was because the marshaling costs (Steps 1, 3, 5, and 7)
were many times more expensive than a local method call. This was often a prohibitive cost, since the
methods to get geoObject attributes would be called thousands of times. The implementation
performed even worse when the client and server were placed over a WAN; in this case the
communication costs (Steps 2 and 6) dominated.
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4.1.1.2 Implementation 2: Aggressive Pre-Fetching and Caching

The second implementation of render region () attempted to work around the limitations of the
first by aggressively traversing all the objects to be retrieved, prefetching the attributes of each object
that were most likely to be needed by the client, and bundling all this information into one large data
structure. All this was performed on the server and the result passed back in one large structure. This
structure included references to the remote objects, in case less-frequently-requested attributes needed
to be queried. Basically, the second implementation changed the data type of the return value of
get_objects () from a list of object pointers to a list of structures. Thus, most of the accesses to
geoObject were local, but at the cost of increasing the size and complexity of
get_objects ()'sretumn value.

This implementation delivered near-optimal performance in terms overall latency for
render region () inthe WAN case, because one large message was sent rather than thousands of
small messages achieving much higher overall throughput. But this implementation would be
considered inefficient if the map application were implemented in the same address space, because it
copies all the geoObject's states.

On a LAN, however, it performed poorly in comparison to other possible implementations. Because
the attributes of all objects were returned in one large call, there was no opportunity to pipeline the
process. Pipelining could include rendering geoObjects while others are still being transmitted or
even pipelining the marshaling, transmission, and unmarshaling of the geoObject list itself (steps 5,
6, and 7). Because the cost of marshaling the large call (steps 5 and 7) are comparable to the cost of
rendering and these operation use different resources (client CPU and server CPU) the overall latency
of render_region() operation could have been accelerated significantly by performing those two
subtasks in parallel.

Another reason to pipeline is to give early feed back to the user, that is, to display geographical data as
they come in. For the WAN, pipelining does not benefit the overall latency of
render region (), because the transmission time for sending the results of get_objects ()
(Step 6) dominates the other communication steps and the rendering time. Pipelining may even make
the latency worse because to implement pipelining involves adding new message headers which will
increase the amount of data that must be sent as part of the return value, hence increasing the
transmission time. Yet pipelining may be still be desirable for early feedback reasons. Hence this
dilemma can only be resolved with additional information from the users of the system. For example,
web browsers have a preference option to allow images to be displayed in progressive stages while
they are being received.

4.1.1.3 Implementation 3: Streaming Messages

An alternative implementation is to use socket-based implementation of get_object (), where the
client would send a request message and continuously poll for a sequence of messages containing the
geospatial object to be rendered. This technique is often called streaming and is much in favor in
some research communities. It allows for the fullest pipeline parallelism possible. This
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implementation was rejected prior to coding, however, because it would have abandoned the object-
oriented interfaces; these are considered to provide many software engineering benefits over the

code’s life cycle. It also would have required too much rewriting of the code. We are currently
investigating using a form of the CORBA event service to stream geoObjects between the client
and the server. But even this scheme will involve a drastic restructuring of the basic

render region().
4.1.1.4 Implementation 4: Decomposition Layer

Another alternative implementation does not change the structure of render_region (), but still
implements pipelining of for the geoObject list. This implementation places a thin layer above the
CORBA interface for get_objects () which is transparent to the rest of render_region().
This layer decomposes the geographical region into a number of subregions, and invokes
get_objects() oneach subregion in parallel, collects all the replies, and combines them into one
reply to the client. ‘

This allows for a good deal of pipeline parallelism with as few as four or nine subregions. It also
involves no change to the API that the server object presents to the client, merely the relatively simple
insertion of a “plug compatible” layer. But it still requires a great deal of experimenting with the
scheme of decomposing the main region to find a scheme that will perform adequately in all
environments in which the program has to be deployed. But note that for reason mention above, this
implementation would improve latency on the LAN, but would actually degrade some performance
parameters on the WAN.

A variation of this implementation is to specify the same large data set, but to request only a specific
part of the data to be returned, e.g., only the first half of the data, or only the third tenth. The entire
data set can be retrieved by an appropriate sequence of calls that retrieve all the pieces, while enjoying
all the parallelism of the decomposition layer. Such an approach, however, requires a modification of
the interface and so is not plug-compatible.

4.1.2 Lessons Leamed

There are a number of important lessons to be learned from the implementation possibilities of this
one function. In all cases, three things indicate which algorithm to use:

1. Resource capacity (client CPU, server CPU, communication links, etc.)
2. Usage patterns (number of calls, size of the calls, etc.)
3. QoS requirements (low latency, early feedback, etc.)

These three items cannot be ascertained until runtime. For example, the application can be fielded on
different hardware and network configuration (resource capacity); the user can choose different
geographic regions of dramatically different sizes (usage pattern); and the user can change his or her
desire for early feedback (QoS requirements).
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These implementations are very different, and thus without any systematic support to capture resource
availability, usage patterns, and choose the best algorithm, porting the method to perform over a
different environment requires a major rewrite of the code. Worse, this code now no longer works
very well, if at all, in the old environment!

Thus, the implementation of just this one function would have benefited greatly from a framework
which could:

1. Allow the development of different implementations of the same functional interface.
Gather the information about resource contention, etc. for the application.

Provide a way to specify the usage patterns for the client.

Cal o

Automatically deploy the best implementation of a module for the current resource conditions
and usage patterns.

Note that the above discussions did not involve the semantics of geospatial data, just generic
interactions, so any such framework would have potential for reuse across many kinds of collaborative
workspace applications. The QuO framework was designed to do precisely the above. Furthermore,
QuO lets you mix these QoS design patterns with any interface (specified in IDL), permitting huge
labor savings and performance which will often be close to hand-coded implementations.

4.2 QoS Requirements for Collaborative Workspace Applications

Quality of service (QoS) is an established term in the multimedia application domain, frequently
referring to the end-to-end performance characteristics of the delivery of a unidirectional video stream.
However, video is only one possible component of an application. We thus wish to upgrade this
limited understanding of QoS to better suit more general distributed application needs, especially
those from the area of collaborative workspaces.

A more complete picture of a typical collaborative application (based loosely on MATT) is given in
Figure 5. It shows the multiple levels of interactions between just two of the users collaborating to
develop a joint logistical or transportation plan. We will discuss these levels to help illustrate how a
QoS system should be able to accommodate not just a narrow definition of QoS, but should be useful
to the more diverse range of typical collaborative workspace requirements.
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The bottom level of interaction involves a videoconference between the participants. The middle level
consists of the geographical shared workspace that MATT provides. The top level consists of shared
plans that are created iteratively by complex scheduling algorithms based on user inputs. These levels
of interaction are quite different with respect not only to the kinds of reservations that would be
required to provide the desired QoS, but also in the ways in which they can and should adapt when
there are insufficient resources to provide the desired QoS at all levels.

The video and audio streams require real-time reservations to provide the timeliness (in this case
reasonably low latency and jitter) required for them to be useful. Such reservations are feasible
because the resource requirements for such video streams are well known. The shared workspace
provided by MATT must have enough resources so the updates are predictable, or its utility to the
users will rapidly decline. The scheduling algorithms do not need to be predictable, because they can
take hours to run and hence the users are not waiting in real time for them to complete. Indeed,
providing any sort of predictability for this layer would be infeasible; the number and duration of its
interactions cannot practically be computed in advance, and we do not know what resources to set
aside for them.

These layers also differ in the ways in which they can adapt to degraded resources and provide the
best service possible given the existing conditions. In the videoconference layer, the video stream has
ample opportunity to run at a lower update rate and still be reasonably useful to the user. The audio
stream, however, can not be scaled back much less and still be useful. The MATT layer providing a
shared workspace can be scaled back from providing 5-second updates to 30-second updates, for
example. At some point, however, it rapidly becomes useless to the users if the upgrades degrade any
further. Finally, the shared plan layer has great flexibility in adapting to fewer resources because no
user is waiting in real time for it.

Thus, in an application such as this, a shared workspace, and an audio component, the video
component may offer value to a certain set of users, or may offer little value to other users or to the
same user with different collaborators or in a different environment.

QoS involves the delivery of whatever service the user needs (such as information or interaction with
a coworker): how timely this delivery is, how much is delivered, and how accurate (error-free) it is

Scheduling Shared Plans heduling
Algorithms l I Algorithms Best-Effort
Shared Workspace
MATT MATT Predictable
Video Video Video Real-Time
Conf. Audio Cont.
(o) () =) o=
« Figure 5: Collaborative Planning Usage
Patterns
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[REF-07]. There is thus a need to be able to specify and manage a broad range of QoS properties,
more than the typical set of multimedia-based properties, which focus on communication/bandwidth
properties and have a real-time and LAN-based flavor

4.2.1 Broad Scope of QoS

The need for adaptation raises difficult problems of systems engineering. There are many dimensions
over which the usage and environment of applications may vary, for example:

o The type of user task that is to be performed.

o The size of the user group.

e The extent of the network (global or local).

e The capacity and loading factors of the network.

There is no such thing as a universal application, of course; variations in types of user tasks demand
the development of entirely new applications for some new sets of requirements. But taken
altogether, there are too many variables in the world of collaborative workspaces to code a new
application from the ground up for each new combination of requirements. Not only do we want our
applications to adapt to changing circumstances, but we want the bulk of code we wrote for one set of
circumstances (capturing the function of the application) still to be used in new circumstances.

QoS middleware for collaborative workspaces thus must allow us to combine solutions to these
problems, including:

e User interaction (task-specific functionality) at the application level.
e Resource issues and adaptation at the middleware level.

e Transport details at a lower level.

4.2.2 Adaptation to Changes in Quality of Service

Even within a single distributed execution of a single application, there can be wide variations in QoS
requirements of collaborative workspace applications. For example:

Some groups of users may be tightly coupled to each other, but only loosely coupled to other
individuals or groups.

Some users may be located in next-door offices, others at opposite sides of the globe.
Network conditions may be pour for some users, excellent for others.

These requirements also can change dynamically as time passes. Developers of collaborative
applications would like to be able to field a family of applications which are intended for new
operating environments, and they require systematic support for QoS to be able to achieve this.
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5 Collaborative Workspaces and Quality of Service

(QoS) Metrics

As shown in the preceding section, collaborative workspaces will in many cases require some non-
trivial level of QoS. Such a requirement, however, is meaningless unless we can specify the level of
QoS that is needed or desired by applications and their users. Likewise, we cannot determine whether
the requirement is being met unless we have some way to measure the QoS actually obtained by the
application. We address these two issues in this section.

5.1 Metrics

In order to tailor its activation the meta-object needs quantification of the service behavior and needs
of the collaboration it is supporting. Two principal categories of metrics are those defined from the
perspective of a single user and those defined from the perspective of a group of two or more users.
The former is not a pre-requisite for the latter but given local metrics there are many possibilities in
how one might combine these to form a global metric.

While it is useful to measure how well the system is meeting the collective requirements of its users,
actually quantifying this based on metrics for isolated users is difficult to do in a way that is both
objective and representative. An example of the difficulties that arise is the consideration of a system
in which one user has poor network connectivity, while all the others have good connectivity. To
measure how well the system supports poor network situations, one might want to weight the local
metrics of the modem user more heavily. On the other hand, what objective numerical basis is
selected to weight the metric? The poor performance may be poor “on average”, “at peak”, or “in
variation”, and still other parameters of what is in actuality a distribution over time. Which
parameters are more important ultimately depend on which aspects of the system you are really trying
to measure, and no single choice appears definitive. What kind of aggregation function to use and if
aggregation is meaningful will vary from metric to metric.

5.2 Dependability

We will also require second order metrics measuring how well the system meets the constraints
requested by its users. The simplest form of these would simply be the total amount of time for any
particular constraint fails to be met. Similar aggregation issues exist for this type of metric if the
constraints in question are locally defined.
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5.3 Mutual Consistency Metrics

This subsection defines one family of metrics for mutual consistency. The idea is counting the
number of updates any particular participant has yet to receive. The globalization of this metric is
achieved by simply summing the individual update counts. A related metric is the amount of data that
needs to be delivered to each party. This weights each update count by the size of the update it refers
to. Finally one can weight these sizes by the time it would take to transfer them to each party.
Because of varying network conditions, this final metric is an estimate rather than an exact quantity.

5.3.1 Accuracy Metric

An upper bound on the number of network events needed to restore consistency is given by the total
number of out-of-date versions, summed over all hosts:

AT =3 (T ~H)

Notes:
1. H;<=T,so o(T)>= 0, and equals 0 only at consistency

2. This is an upper bound on the number of network events needed to achieve zero
inconsistency.

3. This is not a completely accurate estimate. This is an over-estimate because it assumes only
one update event per network event and no known objects above the greatest lower bound, H.
But there is also a small correction in the opposite direction since some duplicate
transmissions can happen. This latter correction can be eliminated if one defines a network
event to include all re-transmissions necessary.

5.3.2 Precision Metric

There are two related inconsistency metrics for precision. The summation restriction is the same, but
the terms of the sum differ.

(D)= 7(T)

(T)= X Upyover all k, v such that Ty, > H;

The amount of data which needs to be transferred to achieve a=0 is the sum of the individual
encodings of state transitions.
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5.3.3 Timeliness Metric

The amount of time it would take to transfer this data strongly depends on both transmission strategy
and on source distribution. For fully symmetric sources of state transitions and point-to-point
transmission:

7(T)=),m(T)M™ > bandwidth;'
i i

(the last factors are just the mean inverse bandwidth out of i).

5.3.4 General Notes on Metrics

The @, 7, and T concepts captured by the above metrics should be related measures with similar sum
and weight structures. As conceived here, the three different qualities are almost different “units” for
consistency, rather than radically distinct measurements.

The skew counting approach detailed above is not the only possible measure. Another possibility
would be a generalization to information theoretic entropy measure. This is given by Z, pilog p
where the p; are the probabilities of system state i. Mutual inconsistency presents a few choices on
the state space indexed by i here, but the most natural one is the states which the system could be in
given the relaxed consistency constraint. If each possible skew state is equally likely, p; = I/N, and
the entropy is in fact simply log N. Ifthe N in question is the number of possible states the data can be
in, this is the product of all the individual possibilities for variation — i.e. the log of the product of 2
raised to the power of the number of bits to represent the discrepancies. The logarithm of that product
is thus a sum almost identical to the above proposed inconsistency metric, 7(T). Hence entropy
metrics are really a generalization of the skew-counting measure, where more information about the p;
is taken into account. This information may come from either an a priori model of access patterns or
a heuristic probability distribution based upon past history. This entropy metric for inconsistency
would lead to another family of derived metrics with data and transfer time scale. Indeed there may
even be reasonable physical analogies to entropy-related quantities such as temperature.

5.3.5 Metrics Measurement Issues

Both the simple “skew counting” and the “state counting” measures require near-perfect global
information to evaluate. In general any measure of distributed inconsistency will have this problem
because even determining if perfect consistency exists requires global data. This unfortunately makes

these metrics very expensive to dynamically collect, since it requires synchronization points at every
point of measurement.

Determining the behavior of these measured quantities over physical-time relative to algorithms and
protocols employed for ensuring consistency can be achieved from a synthesis of locally logged data.
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At the end of some significant period of data mutation these local logs can be merged and metrics
computed. Even assuming each program is keeping local log information, the question of how much
and of what types remains. For example, if there is no need for 7(T), the size of updates does need not
be recorded, or if there is no need for t(T) then the physical time at message transmission and receipt
need not be saved. It is also important to consider the cost of such detailed logging. Significant
performance impact could be incurred.

There are also significant performance impacts in network load incurred by sending the entire series of
state information to each process in a session. The burden of continual data collection, redistribution,
merging and computation of the metric is likely to be fairly significant, and may negate most gains
one might acquire by any adaptive strategy based on the information.

This raises the important practical question of whether there exists a reasonable approximation
strategy requiring less than perfect information. Since the system aims to be dynamically adaptive to
network conditions.
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6 DSW Experiments

For experimental purposes, we constructed a highly simplified example of an application whose
quality of service needed to be controlled. In our example application, the server simply returned a
Jarge array of 32-bit integers. (Since the contents of the array were not interesting, the array elements
were generated “on the fly” by a simple function whenever the server was called.)

The implementation of adaptation consisted of an interface that allowed the application client to
specify a range of array elements to be returned by a single CORBA call, specified by the starting
position in the array and the number of elements to be returned. This enabled two client algorithms to
be investigated:

1. The client could request the entire array in one CORBA call by passing a zero (to position the
server at the first element of the array) and the full length of the array. This algorithm is similar to
the aggressive prefetching strategy described above for OpenMap.

2. The client could request the contents of the array in N approximately equal pieces by making N
CORBA calls, each time passing a different initial index and a length sufficient to fetch all
elements up to the next initial index. (The length was approximately 1/N times the full length of
the array each time.) This algorithm had characteristics similar to the “chunking” and “streaming”
algorithms proposed for OpenMap.

We implemented a client and a server in Java (using JDK 1.1.5) and ran each on a separate, unloaded
Pentium PC (one for the client, one for the server) on the Linux operating system. All inter-process
communication occurred via the Visibroker for Java 3.0 ORB.

We ran two series of experiments to compare the performance tradeoffs on a LAN with those on a
WAN. For the LAN case, we connected the two PCs with a 10 Mb/s Ethernet isolated from the traffic
on other machines. This should be considered a near-optimum measurement for the given software
running on a network of this type. For the WAN case, we connected the two PCs with a satellite-delay
simulation box, set at a clock rate of 62.5 kHz (to simulate as closely as we could a 56k line) and a
latency of 32 ms (simulating a radio transmission over a total distance of approximately 10,000 km).

The results are summarized in the following table. In each case we tried various access strategies,
including prefetching the entire array at once (represented as 1 subdivision in the table), and various
numbers of subdivisions from 2 to 1000. We tried each strategy 21 times, recording the system time
before and after each attempt and the difference in seconds between those two times. Thus each
possible case was represented by a uniform sample of 21 measurements. Each measurement in the
LAN environment transferred 200,000 integers, or about S00KB. In the WAN environment it was
necessary to “adapt” the example by sending a smaller array of 10,000 integers (about 40KB) in order
for the experiments to be completed in a timely fashion.

Table 3 displays the smallest elapsed time observed for each strategy, the greatest time, and the
median time. Here, there were 10 measurements in each sample that were faster than the median time
and 10 that were slower; the median time can be regarded as a good measure of the “average” time
taken. (The arithmetic mean, in confrast, is subject to being unrepresentative of the sample, because
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transient “hiccups” in the operating system could add significant amounts of time to some
measurements and skew the sample.)

o Table 3: Experimental Performance on a LAN

Number of Minimum Median Maximum
subdivisions elapsed elapsed elapsed
1 3.785 3.909 4.055
2 3.615 3.792 3.858
3 3.569 3.828 4.043
4 3.667 4.079 4.269
6 3.22 3.348 3.686
8 2.269 2.333 2.408
10 2.092 2.147 2.234
15 1.782 1.793 1.916
20 1.701 1.721 1.781
25 1.708 1.735 1.797
30 1.733 1.75 1.786
40 1.675 1.688 1.707
50 | 1.692 1.71 1.741
60 1.732 1.744 1.816
70 1.678 1.688 1.787
80 1.694 1.701 1.732
90 1.728 1.731 1.785
100 1.742 1.762 1.819
200 2.103 2.151 2224
1000 4.296 5.331 6.425
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Figure 6 : Elapsed Time in seconds vs. subdivisions of the retumned data on a LAN
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 Table 4: Experimental Performance on a WAN

Number of Minimum Median Maximum
subdivisions elapsed elapsed - elapsed
1 5.483 5.501 5.535
2 5.439 5.453 5.489
3 5.427 5.441 5.477
4 5417 5.43 5.465
6 5.397 5414 5.456
8 541 5414 5.449
10 5.395 5.412 5.45
15 5.415 5.425 5.458
20 5.438 5.448 5.492
25 5.653 5.668 5.715
30 5.676 5.688 5.748
40 5577 5.582 5.623
50 5.762 5.774 5.802
60 5.799 5.818 5.847
70 5.855 5.866 6.056
80 5.882 5.91 6.096
90 5.946 5.955 6.197
100 5.986 6.001 6.082
200 6.748 6.889 6.935
1000 12.591 14.944 24.631
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« Figure 7: Elapsed time in seconds vs. subdivisions of returned data, on a simulated WAN

These observations are explained by the following facts:

1. The costs for marshaling and unmarshaling the CORBA request were trivial. In contrast, the CPU
costs for marshaling and unmarshaling the reply were large (on the order of seconds). Half of this
cost was incurred at the server and half at the client. When the entire array was fetched at once,
these costs had to be incurred in sequence; but when the array was fetched in pieces, the client
was able to unmarshal one piece while the server marshaled the next. Hence the subdivided
requests benefited from concurrency, and might be expected to run in less elapsed time.

2. Each individual CORBA call incurred a certain amount of overhead. The greater the number
of subdivisions of the array, the greater the total overhead incurred by that strategy. When the
array was subdivided into a sufficiently large number of pieces, the added cost of this
overhead overwhelmed the speedup attributable to the added concurrency, and the elapsed
time increased. (The measurements for 1000 subdivisions were included to illustrate how

dramatic the slowdown could be.)

3. In the WAN environment, the costs tended to be dominated by the long latencies and low
bandwidth of the communications channel, rather than by the CPU cost of marshaling and
unmarshaling data. (In contrast, marshaling costs were far higher in the LAN in comparison to
network costs.) The overhead associated with each CORBA message is greater in a low-
bandwidth environment, and so the concurrency gains due to subdivision of the array
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represented less of an end-to-end speedup factor than was observed in the LAN, and
disappeared at a much lower degree of subdivision.

We found that the optimal elapsed times for this application in a LAN environment occurred for
subdivisions in the range between 15 and 100 (with local minima at about 40 and 70 subdivisions),
with a speedup by more than a factor of 2, whereas the optimal elapsed times for the WAN occurred
at approximately 10 subdivisions with a speedup of only about 2 percent. Strategies that were optimal
for the LAN case (e.g., 70 subdivisions) actually slowed overall response times in the WAN.

It should be noted that in order to obtain even the observed performance in the WAN environment, it
was necessary to reduce the amount of data sent. Hence two adaptations really were being applied
separately. The question might be raised whether the observed differences were due merely to the
adaptation in the amount of data sent. Indeed, experiments returning 40KB arrays on the LAN showed
very little benefit in subdividing the data, similar to the observations on the simulated WAN. An
alternative explanation is that there is an optimal “frame length” for the returned data; for example, if
it is optimal to divide a 40KB array in 10 pieces, then one should simply divide any array into pieces
of length 4KB. We note, however, that while it was better to divide the 40KB array into pieces of 4KB
each than pieces of 20KB each, the opposite was true of the 800KB array. So whether our property is
“number of pieces” or “size of each piece,” it must still vary in order to adapt to different
environments and requirements.
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7 Conclusions and Future Work

Collaborative workspaces represent a complex but increasing important type of application. These
applications must adapt to changes in system resources, the environment, or user requirements in
order to maintain an acceptable quality of service. Adaptation will become increasingly important as
collaborative applications become more widespread and are applied in more and more non-trivial
environments, such as wide-area networks and environments that are under attack. This is especially
important when the functions for which the collaborative applications are desired (for example, crisis
management) are also the most likely to threaten disruption of the communications network or other
resources.

Quality-of-service can be categorized as constraints on timeliness, precision, or accuracy of the
information transmitted among applications, or among different parts of an application. There is
increasing evidence for the need to measure quality of service, as well as increased understanding of
these metrics.

Applications and demonstrations developed at BBN Technologies illustrate the need for adaptation to
meet quality-of-service goals, as shown in sections 3 and 4 of this report as well as in separate
deliverables produced at BBN. The QuO framework is a promising approach to addressing this
problem.

Much work remains to be done to develop quality-of-service facilities for collaborative workspaces
that can be used as standard practice. Work continues at BBN technologies to integrate practical
quality-of-service tools and concepts into the QuO framework, and to build a toolkit to make this
functionality available to application programmers.
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